skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kisalu, Neville"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Finley, Stacey D (Ed.)
    Despite significant progress in vaccine research, the level of protection provided by vaccination can vary significantly across individuals. As a result, understanding immunologic variation across individuals in response to vaccination is important for developing next-generation efficacious vaccines. Accurate outcome prediction and identification of predictive biomarkers would represent a significant step towards this goal. Moreover, in early phase vaccine clinical trials, small datasets are prevalent, raising the need and challenge of building a robust and explainable prediction model that can reveal heterogeneity in small datasets. We propose a new model named Generative Mixture of Logistic Regression (GeM-LR), which combines characteristics of both a generative and a discriminative model. In addition, we propose a set of model selection strategies to enhance the robustness and interpretability of the model. GeM-LR extends a linear classifier to a non-linear classifier without losing interpretability and empowers the notion of predictive clustering for characterizing data heterogeneity in connection with the outcome variable. We demonstrate the strengths and utility of GeM-LR by applying it to data from several studies. GeM-LR achieves better prediction results than other popular methods while providing interpretations at different levels. 
    more » « less
    Free, publicly-accessible full text available November 14, 2025